资源类型

期刊论文 1147

会议视频 21

年份

2023 96

2022 123

2021 100

2020 60

2019 68

2018 53

2017 53

2016 54

2015 60

2014 59

2013 54

2012 54

2011 47

2010 60

2009 45

2008 36

2007 43

2006 18

2005 11

2004 10

展开 ︾

关键词

水资源 16

细水雾 14

可持续发展 6

泥水盾构 6

反渗透 5

水环境 4

环境 4

砂卵石地层 4

超滤 4

Cu(In 3

Ga)Se2 3

三峡工程 3

主动控制 3

优化 3

农业节水 3

半旱地农业 3

太阳能 3

绿色化工 3

能源 3

展开 ︾

检索范围:

排序: 展示方式:

Thermal performance of phase change material energy storage floor for active solar water-heating system

Ruolang ZENG, Xin WANG, Wei XIAO, Yinping ZHANG, Qunli ZHANG, Hongfa DI,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 185-191 doi: 10.1007/s11708-009-0079-9

摘要: The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the water tank volume or even cancel the tank, a novel structure of an integrated water pipe floor heating system using shape-stabilized phase change materials (SSPCM) for thermal energy storage was developed and experimentally studied in this paper. The thermal performances of the floors with and without the SSPCM were compared under the intermittent heating condition. The results show that the Energy Storage Ratio (ESR) of the SSPCM floor is much higher than that of the non-SSPCM floor; the SSPCM floor heating system can provide stable heat flux and prevent a large attenuation of the floor surface temperature. Also, the SSPCM floor heating system dampens the indoor temperature swing by about 50% and increases the minimum indoor air temperature by 2°C–3°C under experimental conditions. The SSPCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.

关键词: phase change material     energy storage ratio     active solar water-heating    

Cleaning the energy sources for water heating among Nanjing households: barriers and opportunities forsolar and natural gas

Lingyun ZHU,Beibei LIU,Jun BI

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 757-766 doi: 10.1007/s11783-013-0603-3

摘要: Energy for water heating accounts for an increasing part in residential energy demand in China. An extensive survey was conducted to analyze the determinants of household energy choices for water heaters among residents in Nanjing, China. Two sets of variables were examined as potential influences: building features and household socio-economic characteristics. Results suggest that building features such as gas availability and building structures, and household characteristics such as household head’s education degree and energy-conserving sense are crucial determinants in choosing natural gas as water heater energy. Installation permission for solar water heater, building stories, and residential location serve as determining factors in choosing solar water heaters. Based on these, barriers and opportunities are discussed for transitions toward cleaner water heating energies, and suggestions are given for local governments to promote cleaner energy replacement in China.

关键词: residential energy demand     water heating     multinomial logit model    

A small-scale silica gel-water adsorption system for domestic air conditioning and water heating by therecovery of solar energy

Y. YU, Q. W. PAN, L. W. WANG

《能源前沿(英文)》 2020年 第14卷 第2期   页码 328-336 doi: 10.1007/s11708-019-0623-1

摘要: A small-scale silica gel-water adsorption system with modular adsorber, which utilizes solar energy to achieve the cogeneration of domestic air conditioning and water heating effect, is proposed and investigated in this paper. A heat recovery process between two adsorbers and a mass recovery process between two evaporators are adopted to improve the overall cooling and heating performance. First, the adsorption system is tested under different modes (different mass recovery, heat recovery, and cogeneration time) to determine the optimal operating conditions. Then, the cogeneration performance of domestic cooling and water heating effect is studied at different heat transfer fluid temperatures. The results show that the optimal time for cogeneration, mass recovery, and heat recovery are 600 s, 40 s, and 40 s, respectively. When the inlet temperature of hot water is around 85°C, the largest cooling power and heating power are 8.25 kW and 21.94 kW, respectively. Under the condition of cooling water temperature of 35°C, the obtained maximum COP , COP , and SCP of the system are 0.59, 1.39, and 184.5 W/kg, respectively.

关键词: silica gel-water     heat and mass recovery     solar energy     domestic cooling and heating    

Experimental study on performance of passive and active solar stills in Indian coastal climatic condition

R. LALITHA NARAYANA, V. RAMACHANDRA RAJU

《能源前沿(英文)》 2020年 第14卷 第1期   页码 105-113 doi: 10.1007/s11708-018-0536-4

摘要: This present work is aimed to examine the effect of mass flow rate on distillate output and performance of a solar still in active mode. Outdoor experiments were conducted at the coastal town, Kakinada (16° 93′N/83° 33′E), Andhra Pradesh, India. A solar still with a 30° of fixed cover inclination, 1m of effective basin area, and a flat-plate collector (FPC) with an effective area of 2 m were used. An attempt was also made earlier in passive mode to optimize the water depth for the same solar still for maximum yield and distillation efficiency. For the passive still, it is observed that the capacity of heat storage and heat drop are significant parameters that affect the still performance. For the selected still design, the study reveals that 0.04 m water depth is the optimum value for specific climatic conditions. In the active solar still, with the optimum water depth, different flow rates of 0.5, 1 and 1.5 L/min are considered through FPC. It is observed that both the mass flow rate and the variation of internal heat transfer coefficients with the mass flow rate have a significant effect on the yield and performance of the still. The experimental results show that the combination of 1.5 L/min mass flow rate and an optimum water depth of 0.04m leads to a maximum yield for the active solar still. The enhanced yield of the active solar still is 57.55%, compared with that of the passive solar still, due to increase in area of radiation collection and more heat absorption rate.

关键词: distillation efficiency     solar still     heat transfer coefficient     water depth     optimum and mass flow rate    

A state-of-the-art review of solar passive building system for heating or cooling purpose

Arun Kumar NANDA,C K PANIGRAHI

《能源前沿(英文)》 2016年 第10卷 第3期   页码 347-354 doi: 10.1007/s11708-016-0403-0

摘要: The major portion of energy in a building is consumed by heating, ventilating, and air-conditioning (HVAC). The traditional heating and cooling systems contribute greatly to the emission of greenhouse gases, especially carbon dioxide. Four different ways, i.e., Trombe wall, solar chimney, unglazed transpired solar façade, and solar roof, are adopted for solar heating. Similarly, two major ways, i.e., evaporative cooling and building integrated evaporative cooling are adopted for cooling of the building. Therefore, an attempt has been made in this paper to compile the developments of solar heating and cooling technologies in a building.

关键词: HVAC     heating     cooling     solar heating     carbon dioxide (CO2) emissions    

A concept of capillary active, dynamic insulation integrated with heating, cooling and ventilation, air

Mark BOMBERG

《结构与土木工程前沿(英文)》 2010年 第4卷 第4期   页码 431-437 doi: 10.1007/s11709-010-0071-9

摘要: When a historic fa?ade needs to be preserved or when the seismic considerations favor use of a concrete wall system and fire considerations limit exterior thermal insulation, one needs to use interior thermal insulation systems. Interior thermal insulation systems are less effective than the exterior systems and will not reduce the effect of thermal bridges. Yet they may be successfully used and, in many instances, are recommended as a complement to the exterior insulation. This paper presents one of these cases. It is focused on the most successful applications of capillary active, dynamic interior thermal insulation. This happens when such insulation is integrated with heating, cooling and ventilation, air conditioning (HVAC) system. Starting with a pioneering work of the Technical University in Dresden in development of capillary active interior insulations, we propose a next generation, namely, a bio-fiber thermal insulation. When completing the review, this paper proposes a concept of a joint research project to be undertaken by partners from the US (where improvement of indoor climate in exposed coastal areas is needed), China (indoor climate in non-air conditioned concrete buildings is an issue), and Germany (where the bio-fiber technology has been developed).

关键词: capillary active insulation     integrated heating     cooling and ventilation     air conditioning (HVAC) and building enclosure     dynamic insulation     switchable thermal resistance     variable U-value walls    

Efficient use of waste heat and solar energy: Technologies of cooling, heating, power generation and

Ya-Ling HE, Ruzhu WANG, Anthony Paul ROSKILLY, Peiwen LI

《能源前沿(英文)》 2017年 第11卷 第4期   页码 411-413 doi: 10.1007/s11708-017-0525-z

Approaching the commercial threshold of solar water splitting toward hydrogen by III-nitrides nanowires

《能源前沿(英文)》 doi: 10.1007/s11708-023-0870-z

摘要: Approaching the commercial threshold of solar water splitting toward hydrogen by III-nitrides nanowires

关键词: threshold solar water     splitting hydrogen III    

Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water

《能源前沿(英文)》 2021年 第15卷 第3期   页码 596-599 doi: 10.1007/s11708-021-0745-0

摘要: Photoelectrochemical (PEC) water splitting is regarded as a promising way for solar hydrogen production, while the fast development of photovoltaic-electrolysis (PV-EC) has pushed PEC research into an embarrassed situation. In this paper, a comparison of PEC and PV-EC in terms of efficiency, cost, and stability is conducted and briefly discussed. It is suggested that the PEC should target on high solar-to-hydrogen efficiency based on cheap semiconductors in order to maintain its role in the technological race of sustainable hydrogen production.

关键词: hydrogen production     photovoltaic     electrocatalysis     photoelectrocatalysis     water splitting    

Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-drivenwater splitting: a mini review

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 777-798 doi: 10.1007/s11705-022-2148-0

摘要: As an eco-friendly, efficient, and low-cost technique, photoelectrochemical water splitting has attracted growing interest in the production of clean and sustainable hydrogen by the conversion of abundant solar energy. In the photoelectrochemical system, the photoelectrode plays a vital role in absorbing the energy of sunlight to trigger the water splitting process and the overall efficiency depends largely on the integration and design of photoelectrochemical devices. In recent years, the optimization of photoelectrodes and photoelectrochemical devices to achieve highly efficient hydrogen production has been extensively investigated. In this paper, a concise review of recent advances in the modification of nanostructured photoelectrodes and the design of photoelectrochemical devices is presented. Meanwhile, the general principles of structural and morphological factors in altering the photoelectrochemical performance of photoelectrodes are discussed. Furthermore, the performance indicators and first principles to describe the behaviors of charge carriers are analyzed, which will be of profound guiding significance to increasing the overall efficiency of the photoelectrochemical water splitting system. Finally, current challenges and prospects for an in-depth understanding of reaction mechanisms using advanced characterization technologies and potential strategies for developing novel photoelectrodes and advanced photoelectrochemical water splitting devices are demonstrated.

关键词: photoelectrochemical water splitting     photoelectrodes     hydrogen production     charge separation     catalytic mechanism    

Hydrogen production from water splitting on CdS-based photocatalysts using solar light

Xiaoping CHEN, Wenfeng SHANGGUAN

《能源前沿(英文)》 2013年 第7卷 第1期   页码 111-118 doi: 10.1007/s11708-012-0228-4

摘要: Hydrogen energy has been regarded as the most promising energy resource in the near future due to that it is a clean and sustainable energy. And the heterogeneous photocatalytic hydrogen production is increasingly becoming a research hotspot around the world today. As visible light response photocatalysts for hydrogen production, cadmium sulfide (CdS) is the most representative material, the research of which is of continuing popularity. In the past several years, there has been significant progress in water splitting on CdS-based photocatalysts using solar light, especially in the development of co-catalysts. In this paper, recent researches into photocatalytic water splitting on CdS-based photocatalysts are reviewed, including controllable synthesis of CdS, modifications with different kinds of cocatalysts, solid solution, intercalated with layered nanocomposites and metal oxides, and hybrids with graphenes etc. Finally, the problems and future challenges in photocatalytic water splitting on CdS-based photocatalysts are described.

关键词: hydrogen     photocatalysis     solar conversion     cadmium sulfide (CdS) complex    

Rapid transaction to load variations of active filter supplied by PV system

M. BENADJA,S. SAAD,A. BELHAMRA

《能源前沿(英文)》 2014年 第8卷 第3期   页码 335-344 doi: 10.1007/s11708-014-0325-7

摘要: This paper deals with the analysis and control of a photovoltaic (PV) system connected to the main supply through a Boost converter and shunt active filter supplied by a PV system providing continuous supply of nonlinear load in variation. A robust control of a PV system connected to the grid while feeding a variable nonlinear load is developed and highlighted. This development is based on the control of the Boost converter to extract the maximum power from the PV system using the Perturb and Observe (P and O) algorithm in the presence of temperature and illumination. The proposed modeling and control strategy provide power to the variable nonlinear load and facilitates the transfer of power from solar panel to the grid while improving the quality of energy (harmonic currents compensation, power factor compensation and dc bus voltage regulation). Validation of the developed model and control strategy is conducted using power system simulator Sim-Power System Blockset Matlab/Simulink. To demonstrate the effectiveness of the shunt active filter to load changes, the method of instantaneous power ( theory) is used to identify harmonic currents. The obtained results show an accurate extraction of harmonic currents and perfect compensation of both reactive power and harmonic currents with a lower THD and in accordance with the IEEE-519 standard.

关键词: solar panels     maximum power point tracking (MPPT)     DC/DC converter (Boost)     shunt active filter     instantaneous power control     power quality     harmonics     imbalances     reactive energy    

Designs and practices of energy saving in Lhasa Railway Station

Kai CUI, Yungang PAN, Lixin SHAN,

《能源前沿(英文)》 2010年 第4卷 第1期   页码 106-116 doi: 10.1007/s11708-010-0011-3

摘要: The design, construction, operation and on-site measurement of Lhasa Railway Station was summarized. The problems and corresponding solutions during the implementation of building energy saving design and utilization of solar energy were proposed.

关键词: building energy saving     natural ventilation     solar energy     radiant floor heating    

An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1518-7

摘要:

• Antibiotic azithromycin employed in graphite electrode for EAB biosensor.

关键词: AZM@GP composite electrode     EAB-biosensor     Water quality early-warning    

Wastewater treatment meets artificial photosynthesis: Solar to green fuel production, water remediation

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-022-1536-5

摘要:

• Mitigating energy utilization and carbon emission is urgent for wastewater treatment.

关键词: Wastewater treatment     Artificial photosynthesis     Microbial photoelectrochemical (MPEC) system     Carbon neutral     Renewable energy    

标题 作者 时间 类型 操作

Thermal performance of phase change material energy storage floor for active solar water-heating system

Ruolang ZENG, Xin WANG, Wei XIAO, Yinping ZHANG, Qunli ZHANG, Hongfa DI,

期刊论文

Cleaning the energy sources for water heating among Nanjing households: barriers and opportunities forsolar and natural gas

Lingyun ZHU,Beibei LIU,Jun BI

期刊论文

A small-scale silica gel-water adsorption system for domestic air conditioning and water heating by therecovery of solar energy

Y. YU, Q. W. PAN, L. W. WANG

期刊论文

Experimental study on performance of passive and active solar stills in Indian coastal climatic condition

R. LALITHA NARAYANA, V. RAMACHANDRA RAJU

期刊论文

A state-of-the-art review of solar passive building system for heating or cooling purpose

Arun Kumar NANDA,C K PANIGRAHI

期刊论文

A concept of capillary active, dynamic insulation integrated with heating, cooling and ventilation, air

Mark BOMBERG

期刊论文

Efficient use of waste heat and solar energy: Technologies of cooling, heating, power generation and

Ya-Ling HE, Ruzhu WANG, Anthony Paul ROSKILLY, Peiwen LI

期刊论文

Approaching the commercial threshold of solar water splitting toward hydrogen by III-nitrides nanowires

期刊论文

Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water

期刊论文

Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-drivenwater splitting: a mini review

期刊论文

Hydrogen production from water splitting on CdS-based photocatalysts using solar light

Xiaoping CHEN, Wenfeng SHANGGUAN

期刊论文

Rapid transaction to load variations of active filter supplied by PV system

M. BENADJA,S. SAAD,A. BELHAMRA

期刊论文

Designs and practices of energy saving in Lhasa Railway Station

Kai CUI, Yungang PAN, Lixin SHAN,

期刊论文

An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor

期刊论文

Wastewater treatment meets artificial photosynthesis: Solar to green fuel production, water remediation

期刊论文